

SISTEMA ANTI-REFLEXÃO DE TRINCAS

HUESKER

Ensaios Dinâmicos

REPORT

Dentro do programa de doutorado do Eng. Guillermo Montestruque, desenvolvido no Instituto Tecnológico de Aeronáutica (ITA), foram realizados ensaios dinâmicos de fadiga em vigas de concreto asfáltico, com e sem a presença da geogrelha Hatelit C 40/17, como camada intermediária. Esta pesquisa teve como objetivo estudar a influência do Hatelit C nos mecanismos de propagação de trincas.

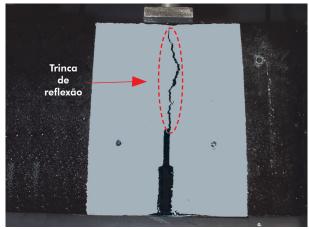


Figura 1 - Sem Hatelit C: Propagação rápida da trinca de reflexão (aprox. 80.000 ciclos de carregamento).

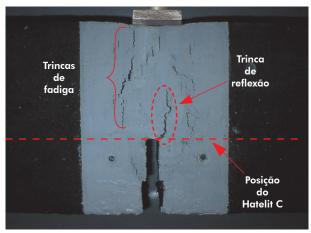


Figura 2 - Com Hatelit C: Interrupção da trinca de reflexão e surgimento de micro trincas por fadiga no concreto asfáltico (aprox. 500.000 ciclos de carregamento).

Devido à longa duração do ensaio com Hatelit C, o critério da finalização adotado foi quando as trincas de menor severidade alcançaram a superfície, ao redor de 500.000 ciclos. Essas vigas, entretanto, ainda não haviam atingido a sua ruptura total, apresentando menores deformações plásticas do que as vigas sem o Hatelit C (Figura 3).

O Hatelit C impediu a propagação das trincas subjacentes, comprovando que a sua presença como camada intermediária teve um efeito significativo no aumento da vida útil da nova camada asfáltica.

Vigas de 46cm de comprimento, 7,5cm de largura e 15cm de altura, com uma abertura na parte central inferior foram moldadas em laboratório, simulando uma trinca no revestimento asfáltico. O Hatelit C foi posicionado exatamente sobre a extremidade dessa abertura, onde se tem a maior concentração de tensões por efeito do carregamento cíclico. Durante a aplicação dos carregamentos cíclicos, tanto em modo de flexão (carga no centro da viga) quanto cisalhamento (carga ao lado da abertura), foram medidas as deformações plásticas nas vigas e as aberturas da trinca de reflexão. Nas vigas sem o Hatelit C, a trinca de reflexão surgiu após poucos ciclos de aplicação de carga. Sua ascensão ocorreu rapidamente e de forma vertical (Figura 1). O ensaio foi finalizado com a ruptura das vigas, ao redor de 80.000 ciclos. Nas vigas reforçadas com Hatelit C, a ascensão vertical da trinca de reflexão foi interrompida e, após vários ciclos de carga e descarga, um novo padrão de trincamento foi observado: micro-fissuras foram surgindo de forma aleatória, associadas à própria fadiga da massa asfáltica (Figura 2), independente do mecanismo de reflexão.

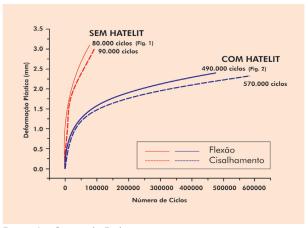


Figura 3 - Curvas de Fadiga

SISTEMA ANTI-REFLEXÃO DE TRINCAS Simulações Numéricas

Simulações numéricas por meio do Método dos Elementos Finitos (MEF) foram realizadas com a finalidade de interpretar os resultados obtidos em ensaios dinâmicos de fadiga, utilizando-se o software da MacNeal-Schwendler Corporation, MSC.NASTRAN (Nasa Structural Analysis). As análises foram baseadas no princípio de energia global com a utilização da técnica de liberação de nós na malha de elementos finitos, para simular a propagação da trinca observada em laboratório.

Os resultados mostraram que, no estado inicial, a extremidade da trinca é a região de máxima tensão de tração, representada na cor vermelha (Figura 4), havendo uma redução dessas tensões devido à inclusão do Hatelit C (Figura 4b). Na medida em que os nós foram liberados, simulando a propagação da trinca, verificou-se diferentes comportamentos nas vigas com e sem o Hatelit C. Nas simulações feitas sem o Hatelit C (Figuras 5a e 6a), a máxima tensão de tração permaneceu na região da extremidade da trinca, justificando a sua rápida propagação observada em laboratório. Já nas simulações feitas com o Hatelit C, na medida em que os nós iam sendo liberados, a tensão de tração diminuía progressivamente na extremidade da trinca, aumentando na região do Hatelit C (Figuras 5b e 6b). Em um determinado momento, o nível de tensão de tração atuante na extremidade da trinca chegou a ser suficientemente pequeno para não permitir a sua propagação, justificando a interrupção observada em laboratório (Figura 7). A simulação numérica permitiu uma melhor interpretação do mecanismo de propagação das trincas observado em laboratório. O Hatelit C, atuando como elemento de reforço do concretoasfáltico, absorveu parteda carga aplicada, interrompendo a propagação da trinca de reflexão.

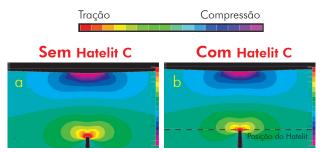


Figura 4 — Estado de tensões inicial das vigas simuladas, antes da propagação da trinca.

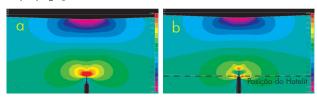


Figura 5 – Estado de tensões das vigas simuladas, após a liberação do primeiro nó.

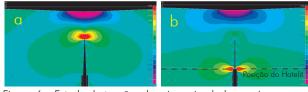


Figura 6 – Estado de tensões das vigas simuladas, após a liberação do quinto nó.

Uma vez que o problema da reflexão de trincas foi controlado, a durabilidade da nova capa passou a ser função das características de fadiga da própria massa asfáltica.

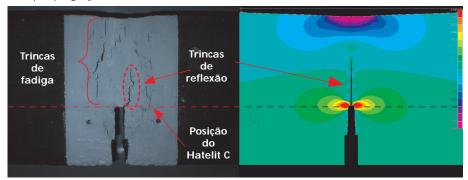


Figura 7 – Comparação entre resultados de laboratório e simulação numérica.

Referência Bibliográfica: Montestruque, Guillermo.- "Contribuição para a Elaboração de Método de Projeto de Restauração de Pavimentos Asfálticos Utilizando Geossintéticos em Sistemas Anti-Reflexão de Trincas". Tese de doutorado, Instituto Tecnológico de Aeronáutica, São José dos Campos, São Paulo 2002.

Hatelit C[®] é marca registrada de Huesker Synthetic Gmbh&Co.

HUESKER Ltda

www.huesker.com

Rua Sete, nº 375 Condomínio Eldorado - CEP 12238-577 São José dos Campos - SP - Brasil

Tel.: +55 (12) 3903-9300 Fax: +55 (12) 3903-9301 huesker@huesker.com.br

